
Comparing different
implementations of Bundle Protocol

version 7
Marcel Beyer

TU Dresden
marcel.beyer@mailbox.tu-dresden.de

July 13, 2020

Abstract

After gaining experiences from version 6 of the Bundle Protocol, which was published as RFC 5050, the
protocol was subject of major changes in version 7, which is currently on the way to be published as an RFC
from it’s current experimental state.

Version 7 of the Bundle Protocol specifies some features which may be implemented. Furthermore there are
already different protocols implementing features on top of the Bundle Protocol, which may or may not be
implemented by different implementations. The aim of this paper is to compere which of these features and
protocols are implemented in different implementations of the Bundle Protocol version 7.

I. Introduction

The Bundle Protocol is a protocol designed
for the end-to-end communication of messages
in Delay (or Disruption) Tolerant Networks
(DTN). Version 6 of the protocol was published
in RFC 5050 [BPv6] in 2007. Until now it is be-
ing reworked as version 7 [BPv7] regarding the
collected experiences from implementations of
version 6.

An overview of the fundamental changes
from version 6 to version 7 can be found in
[BP-Changes].

This paper compares current implementa-
tions of the Bundle Protocol in version 71.
Therefor a set of features, which are marked
as optional in the standard or may be imple-
mented in different ways, is checked for each
of the observed implementations. Furthermore
some self-standing protocols which are related
to DTN or the BP in special are part of the
analysis in this paper.

1BPbis-24

II. Introduction to DTN/Bundle

Protocol

Delay/Disruption Tolerant Networks [DTN]
were originally designed to be used for the
Interplanetary Internet, which means that it
has to take care of occasionally-connected links
in the network which may rely on different
protocols and have high delays.

DTN are not limited to interplanetary net-
works, they may also be used for sensor-based
networks, satellite networks with periodic con-
nectivity or underwater networks with fre-
quent interruptions.

Existing protocols had some issues when
they were used in DTN, which lead to the de-
velopment of the DTN architecture and the
Bundle Protocol. One of those problems is,
that there is no guarantee for stable end-to-end
paths between the source and destination for
the duration of the communication. Further-
more the established protocols rely on a small
end-to-end loss and latency.

The Bundle Protocol is part of the DTN archi-

1

mailto:marcel.beyer@mailbox.tu-dresden.de


Comparing different implementations of Bundle Protocol version 7

tecture and is used as an end-to-end overlay for
the different links in the DTN. The just named
problems are solved by the Bundle Protocol
as it is sending all data in form of small por-
tions, named “Bundles” between the commu-
nication entities of the network, called “Bundle
Nodes”. The Bundles, consisting of some meta-
data and the payload data, are not sent directly
to the destination node but on a hop-by-hop
approach from one node to another. Each of
the nodes is calculating possible routes to the
destination, where the bundle may be sent to
several next hops. For calculating the routes,
several aspects as the physical movement of
the nodes or planned link-disruptions may be
treated. The Bundle Protocol comes also with
the principle of Custody, which means that
a bundle is stored on a node until the next
node took the custody for the bundle – so it is
ensured that there is no packet loss.

III. Implementations

i. ION

The Interplanetary Overlay Network is an im-
plementation for DTN developed at the Jet
Propulsion Laboratory. It is developed in C,
but also has a Python interface. ION supports
version 7 of the Bundle Protocol from version
4.0.0 on.

ii. µPCN

µPCN (Micro Planetary Communication Net-
work) is an implementation of the Bundle Pro-
tocol in version 6 and 7 for POSIX compli-
ant operation systems and the ARM Cortex
STM32F4. It is written in C and licensed under
the BSD 3-Clause License.

µPCN comes with its own µPCN Application
Agent Protocol (AAP). AAP enables applications
to communicate with µPCN over a simple TCP
connection to register (sub)EIDs, send and re-
ceive bundles. Bundles which were enqueued
for sending by µPCN are acknowledged with
an transmission confirmation to the applica-
tion. For the application it is also possible to

cancel already enqueued bundles.

iii. pyDTN

PyDTN is an implementation of the Bundle
Protocol which started with version 7 of the BP
and is developed in Python by the Slovakian
company X-Works.

iv. LibDTN

The core of LibDTN is the basis for the DTN
node application “Terra” and implements the
Bundle Protocol in version 7. It is written
in Java and developed by the swiss company
RightMesh.

IV. Compared Features

This section will provide you a short overview
about the features compared in this paper.

i. Status Reporting

The sender of a bundle can request status re-
ports to get information how the bundle is
processed through the network. So he will get
updates when the bundle is being forwarded,
deleted, received by a node or finally delivered
to the destination node.

To request status reports the corresponding
bits for each event (reception, forwarding, de-
livery, deletion) can be set in the Bundle Pro-
cessing Control Flags. Furthermore there is a
bit to request the time at which an event caused
a status report. The endpoint ID (EID) of the
node to which the status reports will be send
is defined in the Primary Bundle Block.

Beside the information what happened to the
bundle, the reporting node should also write
when and why the action took place in the
status report. Some general information of the
original bundle, like the creation timestamp or
the original source node, are also part of the
status report.

2



Comparing different implementations of Bundle Protocol version 7

ii. Fragmentation and reassembly

ii.1 Fragmentation

In some cases it might be possible that a node
needs to reduce the size of a bundle to transmit
it to the next node. In this case the bundle
can be fragmented if the original sender of
the bundle did not set the “do not fragment”
flag in the bundle processing flags. It is also
possible that the same bundle gets fragmented
several times.

When a bundle is fragmented, the first frag-
ment has to include all extension blocks of the
original bundle. All fragments have the same
source node ID and timestamp as the original
bundle. But the primary block of the fragments
must differ from that of the original bundle, in
that it must indicate that it is a fragment and
that the fragment offset and total application
data unit length must be given.

ii.2 Reassembly

Fragmented bundles need to be reassembled
at latest when they arrive on their destination.
But it is also possible that a node on the way is
already reassembling a bundle.

To reassemble a fragmented bundle, the pay-
loads of all fragments with the same source
EID and creation timestamp are concatenated
to a single payload for the reassembled bundle.
It has to be verified that the payload is non-
overlapping and has the same size as given in
the primary block.

iii. URI schemes

There are different URI schemes to address
EIDs in the bundles.

iii.1 dtn

The dtn URI scheme is defined by the Bundle
Protocol itself. The Endpoints represented by
URIs with this scheme may be single nodes or
groups of nodes.

iii.2 ipn

URIs of the ipn scheme are always represent-
ing single nodes and were originally specified
by the Compressed Bundle Header Encoding
[RFC 6260] for BPv6. While the compressed
encoding was convicted to BPv7 from CBHE,
the scheme and functionality kept the same.

The EID format originally specified in the
BP results in long ASCII strings, which has po-
tential for improvement, especially when short
payloads are transferred. With CBHE a new
URI scheme (“ipn:”) was defined, where EIDs
are represented by a node and a service num-
ber, each in a range from 1 to 264 − 1. CBHE
was not intended to be used universally in De-
lay Tolerant Networking, so it is no problem,
that the address space is downscaled by using
it.

iii.3 imc

Interplanetary Multicast [IMC] specifies, how
multicast communication could be imple-
mented in a DTN using the Bundle Protocol. To
address a multicast group in a way compatible
to CBHE, the imc URI scheme was specified.

iv. Bundle-in-Bundle Encapsulation
(BIBE)

In version 7 of the Bundle Protocol the con-
cept of custody is not further implemented
in the Bundle Protocol itself but specified in
the Bundle-in-Bundle Encapsulation Protocol
[BIBE]. If custody is needed for a bundle, BIBE
will be used as the CLA for sending the bundle.
This results in the encapsulation of the origi-
nal bundle in a new bundle formed according
to the BIBE specification. The outer bundles,
also called BIBE protocol data units, are Bun-
dle Protocol administrative records with the
record type 3. Other nodes implementing BIBE
are sending custody signals, which are also BP
administrative records, if they have some rel-
evant information regarding the custody of a
bundle (e. g. accepting custody).

3



Comparing different implementations of Bundle Protocol version 7

v. Extension Blocks

There are some extension blocks defined by the
Bundle Protocol, but there might – and prob-
ably will – be more extension blocks defined
separately. Due to this independence from the
BP not all nodes will support every type of
extension blocks.

v.1 Previous node extension block

This block provides the EID of the node which
sent the bundle to the node it is residing cur-
rently.

v.2 Bundle age extension block

This block sums up all transmission times of
the bundle added up with the sum of time it
resided on nodes. With this information, nodes
without a precise clock are able to estimate if
the lifetime of the bundle has already exceeded.

v.3 Bundle hop count limit extension block

The hop counter in this block is incremented
every time the bundle is being forwarded. As
soon as the hop counter exceeds the hop limit,
the bundle should be deleted. This is a safety
mechanism to prevent routing loops – compa-
rable to the hop limit2 in IP.

v.4 Metadata extension block

To improve the decisions, how bundles are han-
dled by nodes, e. g. to which node they will
be forwarded or if it will be stored, it is use-
ful to have information which data is carried
by a bundle. Therefor [RFC 6258] specifies the
Metadata Extension Block which enables to
store different metadata types. In [RFC 6258]
only the URI Metadata Type is defined. Also a
range of type IDs is reserved for private use.

vi. BPSec

Originally there was the Bundle Security Proto-
col (BSP) [RFC 6257] to provide integrity and

2or time to life in IPv4

confidentiality for BPv6 bundles. Later the
Streamlined BSP [SBSP] was developed to over-
come some problems the BSP had. So the rout-
ing of bundles and the security features became
decoupled. For version 7 of the bundle proto-
col, the BPSec [BPSec] protocol was developed
and supersedes SBSP.

vii. DTN IP Neighbor Discovery

In DTN networks it is often not possible to
plan in advance which nodes will be reachable.
Therefor the IP Neighbor Discovery [IPND]
provides a way to discover reachable nodes by
sending small UDP messages in the IP under-
lay. By receiving those messages neighbors can
be learned.

viii. Implementation details

Some procedures defined in the Bundle Proto-
col are kept open as implementation details.

viii.1 Malformed bundles

The BP specifies, that malformed parts of bun-
dles “may” be discarded or corrected.

viii.2 Retransmitting when sending failed

If a node was unable to forward a bundle with
at least one convergence layer adapter, it “may”
resend the bundle.

V. Features of the

implementations

i. ION

Status reporting ION is supporting status re-
quests for sending and receiving bundles. The
decision, which status reports are requested,
is kept for the application layer software. If
another node requested status reports, ION is
able to follow the “report status time” flag and
include the current time.

4



Comparing different implementations of Bundle Protocol version 7

Fragmentation and reassembly ION imple-
ments bundle fragmentation and is taking care
of the don’t fragment flag of forwarded bun-
dles. If a DCCP-based [DCCP] CLA is used,
fragmentation is not supported. For bundles
created on a node running ION, proactive frag-
mentation is applied – which means that bun-
dles will already be fragmented if it is known
that one of the nodes on the way of the bundle
only accepts smaller bundles. The fragmenta-
tion is done at the moment when the bundle
gets dequeued for transmission.

Reassembly of bundles is done, when all
fragments were received successfully and the
bundle was destined for the local node.

URI schemes ION is supporting both dtn
and ipn as the two URI schemes for unicast
bundles. Sending to multicast destinations
with imc is also implemented in ION. The im-
plementation of BP version 6 included in ION
supports CBHE [RFC 6260] too, so that the ipn
scheme is available also in BPv6.

Bundle-in-Bundle Encapsulation BIBE is
implemented in ION, but the documentation
[ION] states, the configuration to run ION as
a CLA too would be “not as simple as one
might think”. ION has a separate utility called
bibeadmin to realize BIBE. The parameters for
the encapsulation (like Timeouts etc.) are con-
figured in an autonomous configuration file for
bibeadmin.

Extension blocks ION is shipped with sup-
port for the Previous Node, Bundle Age, Bun-
dle Hop Count Limit and Metadata Extension
block.

Additionaly to these extension blocks, ION
includes also an implementation for the Query
Extension Block [BPQ] and and the Spray and
Wait Block.

The letter one is used to propagate forward-
ing permits using the Spray and Wait [SNW]
routing protocol.

With the Query Extension Block it is possible
to reuse information which is still stored on

intermediate nodes in the DTN. So if a node
A has received some information and node B
requests the same information, B can get the
bundle from an intermediate node which still
stores the answer originally sent to A. By doing
this, the transmission can be sped up since the
answer needs fewer hops to reach B.

ION is built in a way that makes it easy to
support other Extension Blocks without chang-
ing the ION code base.

BPSec Achieving integrity or confidentiality
for bundles by using BPSec is supported by
ION.

DTN IP Neighbor Discovery Discovering
nearby nodes running the Bundle Protocol is
supported by listening to IPND packets. If the
IPND messages indicate a change of a neigh-
boring node (becoming reachable or connection
loss) the local CLAs are informed. Nodes run-
ning ION are also able to announce themselves
by IPND.

Malformed bundles If a node running ION
is receiving a malformed bundle, the bundle
will be discarded.

Retransmission Per default ION is using re-
liable Convergence Layer Adapters like TCP or
red-part LTP, which automatically ensures re-
transmission if data gets lost. This is especially
the case when custody was requested. But it is
also possible to request ION to use unreliable
protocols operating on a best effort basis by
setting a ION specific tag before the transmis-
sion of a bundle gets initiated. To protect these
bundles, ION is also retransmitting bundles if
it was not able to send them successfully. If
the next node, the bundle was sent to, is deny-
ing custody, ION will try to send the bundle
to another node which takes custody for the
bundle.

ii. µPCN

Status Reporting µPCN is sending status re-
ports if they were requested by the origin node.

5



Comparing different implementations of Bundle Protocol version 7

If the status time was requested for status re-
ports, it will be added to the reports.

For bundles sent with µPCN status reports
can be requested by setting the corresponding
bundle control flags.

Fragmentation and reassembly During the
processing of bundles, µPCN is able to frag-
ment every bundle – so also fragments may
be fragmented again. If a bundle is being for-
warded, it is possible that it is fragmented by
µPCN although the “must not be fragmented”
bit was set, since this bit is not checked by
µPCN.

During the reassembly of fragmented bun-
dles, it is checked that there are no blanks in
the payload of the assembled bundle. If any
gaps are recognized, the bundle is seen as mal-
formed.

URI schemes µPCN is supporting the dtn
and ipn schemes for sending and receiving
bundles. The imc scheme for multicast bundles
is not supported.

The checks for the URI scheme are not im-
plemented the same way in all parts of the
code. Sometimes the EID is checked to be the
null endpoint ID or a URI in dtn scheme while
the URI is assumed to be in the ipn scheme
if none of those two matches. In other parts
there is also an explicit check for the EID to be
in ipn scheme and if neither the null endpoint,
dtn scheme nor ipn scheme match, an error is
thrown.

Bundle-in-Bundle Encapsulation BIBE is
not implemented in µPCN. But since the code
for processing bundles is the same for version 6
and 7 of the Bundle Protocol, all checks and
procedures for handling custody are already
in place. They are just not executed because
there are checks if the processed bundle is in
version 6 of the Bundle Protocol. The code
for handling custody is also still using only
the control flags as defined in version 6 of the
Bundle Protocol.

Extension blocks µPCN is able to forward
bundles with unknown extension blocks with-
out discarding them (except discarding was
requested by the control flags).

Further support is only implemented for the
bundle age and bundle hop count limit block.
During the lifetime check of a received bundle,
the bundle age delivered with the extension
block is not yet used to decide if the lifetime
of the bundle exceeded – this check is marked
as a to-do in the code. Any more there is no
serializer for the bundle age extension block
yet. For the bundle hop count limit extension
block the serializer and deserializer is already
finished and for all received bundles, which
come with the extension block, the hop count
is checked and increased.

BPSec There is no support for BPSec at
µPCN yet.

DTN IP Neighbor Discovery IPND was im-
plemented in µPCN but the developers decided
to remove IPND from the µPCN Bundle Pro-
tocol agent. They see IPND comparable with
a routing daemon which should run as a own
process on the nodes and communicate with
µPCN. The contacts learned by a IPND dae-
mon could be propagated to µPCN for exam-
ple using AAP.

Malformed bundles If a bundle is detected
to be malformed during processing it, it will
be discarded.

Retransmission If it was not possible to send
the bundle to the next node, it will be deleted.
This means that possibly requested status re-
ports will be sent before the bundle is dis-
carded on the local node. The custody im-
plementation for version 6 is also sending a
custody release at this point.

iii. pyDTN

Currently the destination EID of all received
bundles is checked for registration on the lo-
cal node. If the EID is unknown, the bundle

6



Comparing different implementations of Bundle Protocol version 7

will not be processed further. Bundles with a
known EID, for which the local node is reg-
istered as a receiver, are checked for correct
formatting before the payload is handed over
to the corresponding application layer software.
With this behavior pyDTN is not forwarding
bundles it received for other destinations.

Status Reporting The status reports and the
corresponding flags for requesting them are
implemented, however the flags of received
bundles are not checked and in this way no
status reports are sent. The functions for seri-
alizing new bundles are supporting to set the
control flags to request status reports, but the
functions creating new bundles are not using
this possibilities.

Fragmentation and reassembly The is frag-
mented flag of bundles is transferred to the
internal representation of the bundles but nei-
ther the functions for receiving nor sending
bundles are using the flags, since the proce-
dures for fragmentation or reassembly are not
implemented.

URI schemes The dtn and ipn schemes for
unicast communication are implemented in py-
DTN. Addressing multicast destinations using
the imc scheme is not supported. If a bundle
contains an EID, which is not using the dtn
or ipn scheme, pyDTN will throw an unknown
schema error.

Bundle-in-Bundle Encapsulation Currently
BIBE is not implemented.

Extension blocks Extension Blocks are imple-
mented in the pyDTN core, so adding support
for new Extension Blocks is not possible with-
out touching the code of the pyDTN core.

The block types for the Previous Node, Bun-
dle Age Block and Bundle Hop Count Limit
Extension Blocks are implemented in pyDTN.
Currently the Metadata Extension Block is not
supported.

When serializing a new bundle, it is possible
to set the Previous Node Block. But since there
is no forwarding of bundles yet, this is never
used.

As the functions for receiving bundles is
quite minimalistic and the lifetime of received
bundles is not checked, there is also no need
to use the information carried in the Bundle
Age block. Like the Previous Node block, the
Bundle Age block is supported in the bundle
serialization, but not used while sending bun-
dles.

The same counts for the Hop Count Limit
Block. It is possible to serialize bundles with
the hop count and limit set to a specific value,
but the functions for sending a bundle are not
using it. Furthermore, it is not checked if the
hop count exceeds the hop limit, when a bun-
dle is received.

BPSec BPSec is not supported by pyDTN yet.

DTN IP Neighbor Discovery The implemen-
tation of DTN IPND was started but is not fin-
ished yet. Currently the code for sending and
receiving beacons is existing but not further in-
tegrated. Also datatypes for strings and SDNV
in the IPND messages have to be implemented.

Malformed bundles If a received bundle is
not passing the checks for correct formatting,
it will be discarded.

Retransmission If there is no CLA which
was able to send a bundle successfully or if
there is no known route to send the bundle,
the bundle will not be retransmitted automati-
cally.

REST API pyDTN comes with an REST API
to easily send bundles. There is also an
REST API to schedule contacts with microPCN
nodes.

7



Comparing different implementations of Bundle Protocol version 7

iv. libDTN

Status Reporting Sending status reports is
supported by libDTN. During the processing of
a received bundle, all requested status reports
are created and gathered before they are sent
out when the processing finished. Requesting
status reports is possible by just setting the cor-
responding control flags in the primary block
of the bundle which should be transmitted.
The creation timestamp is added to all status
reports.

Fragmentation and reassembly Bundle frag-
mentation (and therewith reassembly) is cur-
rently not supported by libDTN.

URI schemes Currently the dtn and ipn
scheme are implemented, the imc scheme for
multicast addresses is not supported.

Bundle-in-Bundle Encapsulation There is
no support for BIBE.

Extension blocks The Previous Node, Bun-
dle Age and Hop Count Hop Limit block are
implemented in libDTN. So it is possible to
create those blocks and send them in bundles
created with libDTN. libDTN is also able to
forward bundles containing those blocks cor-
rectly, but it is not checking the content of those
blocks when a bundle is received. The meta-
data block is not supported at all.

libDTN comes with an implementation for
an extension block called “Routing Block”
which has the Block Type 42. This block type is
currently not registered as a Bundle Block Type
at IANA. Following the comments in the lib-
DTN code, this block should be used to select
the routing strategy. I could not find any fur-
ther specification of the extension block type.

BPSec The Authentication, Confidentiality
and Integrity Blocks of BPSec are supported by
libDTN. The implementation of those blocks
comes also with functions to use them, for ex-
ample to encrypt a given plain text block.

DTN IP Neighbor Discovery IPND is not
supported.

Malformed bundles If there occur any er-
rors during the processing of a bundle because
the bundle is malformed, the bundle will be
deleted silently by libDTN. All status reports
collected until this point will be sent anyhow.

Retransmission If forwarding a bundle fails,
for example because the convergence layer was
not able to send the bundle, it will be dis-
carded.

VI. Summary

While the basic functionality is implemented
in all four implementations, there are some
differences in advanced features like BPSec.
While the differences in the supportet Exten-
sion Blocks should not be critical for interoper-
ability, one has to take care of fragmentation.
Since the imc URI scheme is only supported
by ION it should not be used if interoperabil-
ity with one of the other implementations is
needed yet.

An Overview of the supported features is
given in table 1. Table 2 lists which Extension
Blocks are supported by each implementation.

8



Comparing different implementations of Bundle Protocol version 7

ION µPCN pyDTN libDTN
Status reports X X ∼ X
Fragmentation X X 7 7

URI schemes dtn, ipn, imc dtn, ipn dtn, ipn dtn, ipn
BIBE X 7 7 7

BPSec X 7 7 X
DTN IPND X 7 started 7

Malformed bun. discarded by all implementations
Transmission err. retransmited deleted discarded

Table 1: Implemented features

Prev. Node Bundle Age Hop Count/Limit Metadata
ION X X X X
µPCN 7 ∼ X 7

pyDTN ∼ ∼ ∼ 7

libDTN X X X 7

Table 2: Implemented extension blocks

References

[BCP14] S. Bradner. Key words for use in RFCs
to Indicate Requirement Levels. BCP 14,
March 1997

[BIBE] S. Burleigh. Bundle-in-Bundle Encap-
sulation (draft-ietf-dtn-bibect-03). Internet
Draft, February 2020

[BPSec] E. Birrane, K. McKeever. Bundle Pro-
tocol Security Specification (draft-ietf-dtn-
bpsec-22). Internet Draft, March 2020

[BPv6] K. Scott and S. Burleigh. Bundle Pro-
tocol Specification. RFC 5050, November
2007

[BPv7] S. Burleigh, K. Fall and E. Birrane.
Bundle Protocol Version 7 (draft-ietf-dtn-
bpbis-24). Internet Draft, March 2020

[BPQ] S. Farrell, A. Lynch, D. Kutscher, A.
Lindgren. Bundle Protocol Query Exten-
sion Block (draft-irtf-dtnrg-bpq-00). Inter-
net Draft, May 2012

[BP-Changes] M. Beyer. Comparison of Bun-
dle Protocol version 6 and 7. August 2019,
beyerm.de

[DCCP] H. Kruse, S. Jero, S. Ostermann.
Datagram Convergence Layers for the
Delay- and Disruption-Tolerant Network-
ing (DTN) Bundle Protocol and Licklider
Transmission Protocol (LTP). RFC 7122,
March 2014

[DTN] V. Cerf, S. Burleigh, A. Hooke, L. Torg-
erson, R. Durst, K. Scott, K. Fall, H. Weiss.
Delay-Tolerant Networking Architecture.
RFC 4838, April 2007

[IMC] S. Burleigh. CBHE-Compatible Bun-
dle Multicast (draft-burleigh-dtnrg-imc-
00). Internet Draft, May 2011

[ION] Jet Propulsion Laboratory, California In-
stitute of Technology. Interplanetary Over-
lay Network (ION) Design and Operation.
November 2018, included in the ION re-
lease

[IPND] D. Ellard, R. Altman, A. Gladd, D.
Brown, R. in ’t Velt. DTN IP Neighbor
Discovery (draft-irtf-dtnrg-ipnd-03). Inter-
net Draft, November 2015

9

https://beyerm.de/publications/bundleprotocol67/bp.pdf
https://sourceforge.net/projects/ion-dtn/files/ion-4.0.0.tar.gz/download
https://sourceforge.net/projects/ion-dtn/files/ion-4.0.0.tar.gz/download


Comparing different implementations of Bundle Protocol version 7

[RFC 6257] S. Symington, S. Farrell, H. Weiss,
P. Lovell. Bundle Security Protocol Speci-
fication. RFC 6257, May 2011

[RFC 6258] S. Symington. Delay-Tolerant Net-
working Metadata Extension Block. RFC
6258, May 2011

[RFC 6260] S. Burleigh. Compressed Bundle
Header Encoding (CBHE). RFC 6260, May
2011

[SBSP] E. Birrane. Streamlined Bundle Secu-
rity Protocol Specification (draft-irtf-dtnrg-
sbsp-00). Internet Draft, July 2013

[SNW] Spyropoulos, Thrasyvoulos and Psou-
nis, Konstantinos and Raghavendra,
Cauligi S. Spray and Wait: An Efficient
Routing Scheme for Intermittently Con-
nected Mobile Networks. Association for
Computing Machinery, 2005 https://doi.
org/10.1145/1080139.1080143

10

https://doi.org/10.1145/1080139.1080143
https://doi.org/10.1145/1080139.1080143

	Introduction
	Introduction to DTN/Bundle Protocol
	Implementations
	ION
	PCN
	pyDTN
	LibDTN

	Compared Features
	Status Reporting
	Fragmentation and reassembly
	Fragmentation
	Reassembly

	URI schemes
	dtn
	ipn
	imc

	Bundle-in-Bundle Encapsulation (BIBE)
	Extension Blocks
	Previous node extension block
	Bundle age extension block
	Bundle hop count limit extension block
	Metadata extension block

	BPSec
	DTN IP Neighbor Discovery
	Implementation details
	Malformed bundles
	Retransmitting when sending failed


	Features of the implementations
	ION
	PCN
	pyDTN
	libDTN

	Summary

